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DOI: 10.1103/PhysRevE.81.016704 PACS number�s�: 45.10.�b, 02.60.Cb, 02.70.Bf

I. INTRODUCTION

Discrete gradient methods were introduced many years
ago in order to integrate numerically N-body systems of clas-
sical mechanics with possible applications in molecular dy-
namics and celestial mechanics �1� �see also �2��. In the
present paper, we propose another numerical integrators �the
so-called locally exact discrete gradient methods�. The main
idea of our approach consists in modifying a given numerical
integrator �e.g., by replacing the time step � by some func-
tion depending on � and independent variables� in order to
obtain a “locally exact” integrator �for instance, an integra-
tor, which is locally equivalent to the exact discrete harmonic
oscillator�. The crucial point is to preserve “good” properties
of the considered numerical scheme. In the case of the dis-
crete gradient method, the locally exact modifications pre-
sented in this paper exactly preserve the energy integral. As a
result, our methods inherit the excellent stability and the very
good qualitative behavior of the discrete gradient method
and, in the same time, are much more accurate.

In this paper, we confine ourselves to the one-dimensional
case,

ṗ = − V��x�, ẋ = p , �1�

where V�x� is a potential, and the dot and the prime denote
differentiation with respect to t and x, respectively. In this
case, discrete gradient methods reduce to the so-called modi-
fied midpoint rule,

xn+1 − xn

�
=

1

2
�pn+1 + pn� ,

pn+1 − pn

�
= −

V�xn+1� − V�xn�
xn+1 − xn

, �2�

where � is the time step. One can easily prove that the total
energy is preserved by this scheme,

1

2
pn

2 + V�xn� = E = const. �3�

The modified midpoint rule has been extended, in a natural
way, on the three-dimensional case and on systems of par-
ticles, exactly preserving the total energy, the total linear
momentum, and the total angular momentum of the system
�1�.

More recently, discrete gradient methods have been ex-
tended and developed in the context of geometric numerical
integration �3� �see �4,5��. In particular, Quispel and co-
workers constructed numerical integrators preserving inte-
grals of motion of a given system of ordinary differential
equations �6–8�. Similar ideas were applied in molecular-
dynamics simulations of spin liquids �9�.

In general, geometric numerical integrators are very good
in preserving qualitative features of simulated differential
equations, but it is not easy to enhance their accuracy. Sym-
plectic algorithms can be improved using appropriate split-
ting methods �10–13�. Our research is concentrated on im-
proving the efficiency of the discrete gradient method �which
is not symplectic� without losing its outstanding qualitative
advantages.

II. MODIFIED DISCRETE GRADIENT SCHEME

In a recent paper, we compared several discretizations of
the simple pendulum equation �V�x�=−cos x� with a special
stress on the long-time behavior �14�. The discrete gradient
scheme was among the best ones, especially when large en-
ergies �rotational motion� and the neighborhood of the sepa-
ratrix were concerned. In the paper �14�, we proposed a
modification of the discrete gradient scheme �2�. Assuming
the stable equilibrium at x=0, we replaced � by the function
�0=�0���

�0 =
2

�0
tan

�0�

2
, �4�

where �0=�V��0� �we point out, however, that the time step
of the obtained numerical scheme is given still by ��. The
motivation was to preserve �almost exactly� small oscilla-
tions around x=0, when the pendulum can be treated as a
harmonic oscillator. The classical harmonic oscillator admits
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the so-called exact discretization �compare �15–17�; for more
details, see the next section�. The exact discretization of the
harmonic-oscillator equation has been recently used to derive
an orbit-preserving discretization of the classical Kepler
problem �18�. The modified discrete gradient scheme, ob-
tained in the paper �14�, is quite satisfying: in the case of
small oscillations, this method is better by 4 orders of mag-
nitude than all other considered schemes �including the dis-
crete gradient method�. In the case of other initial conditions,
the method is comparable with the discrete gradient method
�by the way: both methods are of second order�.

The modified discrete gradient scheme of �14� appeared
independently, had a physical motivation �the harmonic os-
cillator�, and was not influenced by existing numerical ap-
proaches. Now, after studying related literature, we see that
analogical �or even identical� modifications could be
achieved in the framework of at least three approaches: non-
standard finite difference schemes of Mickens �19,20�, Gaut-
schi’s trigonometric methods �2,21�, and exponential integra-
tors �22�. However, according to our best knowledge, the
discrete gradient method has never been treated or modified
in the framework of these approaches. Our modifications re-
semble the Mickens approach because the time step � is
replaced by some function ����, but this replacement is a
consequence of different principles than those used by Mick-
ens.

III. LOCALLY EXACT DISCRETE GRADIENT SCHEME
AND ITS SYMMETRIC MODIFICATION

As the main result of this paper, we propose another
�more powerful� modification of the discrete gradient
scheme, namely, the locally exact discrete gradient method,

xn+1 − xn

�n
=

1

2
�pn+1 + pn� ,

pn+1 − pn

�n
= −

V�xn+1� − V�xn�
xn+1 − xn

, �5�

where �n is a function defined by

�n =
2

�n
tan

��n

2
, �if V��xn� � 0� ,

�n = �, �if V��xn� = 0� ,

�n =
2

�n
tanh

��n

2
, �if V��xn� � 0� , �6�

� denotes the time step, and, finally,

�n = ��V��xn�� . �7�

The first of formulas �6� imposes a restriction on the time
step, namely, ��n��. This condition is not very restrictive.
For instance, in the simple pendulum case, we have
�n��0, and, therefore it is sufficient to take ��

1
2T0 �where

T0 is the period of small oscillations around the stable equi-
librium�.

In order to derive the locally exact numerical scheme �5�,
we recall that the classical harmonic oscillator driven by a
constant force admits the exact discretization �like all linear
ordinary differential equations, compare �15,16��. Namely,
the system

	̈ + �2	 = a, 	̇ = p , �8�

where ��0 and a are constant, admits the following exact
discretization:

	n+1 − 2	n cos �� + 	n−1 = � 2

�
sin

��

2
�2

a ,

pn =
�

sin ��
�	n+1 − 	n cos ��� −

a

�
tan

��

2
, �9�

which may be rewritten in the form of the first-order scheme,

	n+1 = 	n cos �� +
sin ��

�
pn +

2a

�2�sin
��

2
�2

,

pn+1 = pn cos �� − 	n� sin �� +
a

�
sin �� . �10�

The discretization �10� is called exact because 	n=	�n��,
pn= p�n��, where 	�t� , p�t� solve the system �8� �in particu-
lar, 	0=	�0�, p0= p�0��. The case �2�0 can be treated in an
analogous way �e.g., for �2�0, we can formally put
�= i���2� obtaining hyperbolic functions�.

The numerical scheme �5� can be derived as follows.
First, we replace �, appearing in formulas �2�, by a variable
�n depending not only on � but also on xn. Similar replace-
ments, �→����, are characteristic for the so-called nonstand-
ard finite difference schemes �20�, but here we allow also a
dependence on xn. Then, we compute the form of the func-
tion �n requiring that the modified scheme �5� is locally ex-
act. By local exactness, we mean that the linearization of the
scheme �5� around xn, i.e.,

xn+1 − xn

�n
=

1

2
�pn+1 + pn� ,

pn+1 − pn

�n
= − V��xn� −

1

2
�xn+1 − xn�V��xn� , �11�

coincides with the exact discretization of the linearization of
the considered system �1� around xn. This linearization is
given by

dp

dt
= − V��xn� − V��xn�	,

d	

dt
= p , �12�

where 	=x−xn and xn is fixed �i.e., it is treated as a constant�.
Comparing Eq. �12� with Eq. �8�, we obtain

�2 = V��xn�, a = − V��xn� . �13�

Moreover, 	n=xn−xn=0 and 	n+1=xn+1−xn. To fix an atten-
tion, we confine ourselves to the case �2�0. Then Eqs. �10�
assume the form
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xn+1 = xn +
sin ��

�
pn +

2a

�2�sin
��

2
�2

,

pn+1 = pn cos �� +
a

�
sin �� . �14�

Therefore, the exact discretization of Eq. �12� is given by
Eqs. �14� with � and a defined by Eq. �13�. In order to
compare Eqs. �11� with Eqs. �13� and �14�, we rewrite Eqs.
�11� as follows:

xn+1 = xn +
�npn

1 + 1
4�n

2V��xn�
−

1

2
�n

2V��xn�

1 +
1

4
�n

2V��xn�
,

pn+1 =

1 −
1

4
�n

2V��xn�

1 +
1

4
�n

2V��xn�
pn −

�nV��xn�

1 +
1

4
�n

2V��xn�
. �15�

Now, we compare Eqs. �15� with Eqs. �13� and �14�. Looking
at the last terms, we immediately get �n= 2

� tan��
2 . Hence,

�n
2V��xn�=4 tan2 ��

2 and one can easily check that Eqs. �15�
coincide with Eqs. �14�. Thus, we derived the first equation
of Eqs. �6�. The remaining subcases of Eqs. �6� can be de-
rived in a similar way.

We point out that �n is a function which is almost con-
stant, �n=�+O��3�, but we are going to show that these very
small variations have surprisingly strong positive influence
on the accuracy of the obtained numerical scheme.

The replacement �→�n works very well for the first-order
systems �5�. However, if we try to replace � by �n in the
second-order discrete equation for xn �see Eq. �46� in the
paper �14��, then we get a difference scheme which is only a
little bit better than the scheme with constant �=�0 and is
much worse than the numerical scheme �5�. We point out that
the second-order consequence of Eqs. �5� is

xn+1 − xn

�n
−

xn − xn−1

�n−1
= −

�n

2
�Vn+1 − Vn

xn+1 − xn
� −

�n−1

2
�Vn − Vn−1

xn − xn−1
� ,

�16�

where VnªV�xn�. Equation �16� contains both �n and
�n−1. Thus, it cannot be obtained from Eq. �46� by the simple
replacement �→�n. However, for �	0, we have �n	�n−1
	� and, in this limit, Eq. �16� coincides with Eq. �46� from
�14�.

The system �1� is obviously symmetric �time reversible�,
while its locally exact discretization �5� are not time revers-
ible. Changing a little bit the definition of �n, namely,

�n =�
V�� xn + xn+1

2
�
 , �17�

we get another integrator, which is time reversible. In what
follows, this integrator �defined by Eqs. �5�, �6�, and �17��
will be referred to as the symmetric modification of the lo-
cally exact discrete gradient scheme.

IV. ORDER OF THE CONSIDERED DISCRETE
GRADIENT METHODS

The order of a numerical scheme is N if
�x�n+1−x��t+���=O��N+1� provided that x�n=x��t�, where
x� =x��t� is an exact solution and, in our case, x� = �x , p�.

The system �5� �where xn�x and pn� p are given and
�n�� is a small parameter� implicitly defines xn+1 and pn+1.
Therefore, using implicit differentiation, we can write down
the corresponding Taylor series,

xn+1 = x + p� −
1

2
V��2 −

1

4
pV��3 +

1

24
�3V�V� − 2p2V���4

+ O��5� ,

pn+1 = p − V�� −
1

2
pV��2 +

1

12
�3V�V� − 2V�p2��3

−
1

24
�4pV�V� + 3p�V��2 − p3V�4���4 + O��5� .

�18�

Then, we use Eq. �1� in order to expand x�t+�� and p�t+��,

x�t + �� = x + p� −
1

2
V��2 −

1

6
pV��3 +

1

24
�V�V� − V�p2��4

+ O��5� ,

p�t + �� = p − V�� −
1

2
pV��2 +

1

6
�V�V� − V�p2��3

+
1

24
�3pV�V� + p�V��2 − p3V�4���4 + O��5� .

�19�

The last step is to substitute an appropriate expression for
�=���� into Eqs. �18� and to compare the obtained � series
with Eqs. �19�.

The conventional discrete gradient method corresponds to
����=�. In this case,

xn+1 − x�t + �� = −
1

12
pV��3 + O��4� ,

pn+1 − p�t + �� =
1

12
V�V��3 + O��4� . �20�

Therefore, the discrete gradient method is of the second or-
der for V��0 �and for V linear in x, one can easily check that
the discrete gradient method is exact, i.e., its order is infi-
nite�.

The Taylor series of �n defined by Eqs. �6� is given by the
following single expression:

���� = � +
1

12
V��3 +

1

120
�V��2�5 + O��7� , �21�

and then Eqs. �18� expand with respect to � as follows:
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xn+1 = x + p� −
1

2
V��2 −

1

6
pV��3 +

1

24
�V�V� − 2p2V���4

+ O��5� ,

pn+1 = p − V�� −
1

2
pV��2 +

1

6
�V�V� − V�p2��3

+
1

24
�4pV�V� + p�V��2 − p3V�4���4 + O��5� .

�22�

Therefore,

xn+1 − x�t + �� = −
1

24
p2V��4 + O��5� ,

pn+1 − p�t + �� =
1

24
pV�V��4 + O��5� . �23�

and we conclude that the locally exact dicrete gradient
method is of the third order.

In case of the modified discrete gradient scheme
�=�0 �see Eq. �4�� and then

���� = � +
1

12
V0��

3 +
1

120
�V0��

2�5 + O��7� , �24�

where V0��V��0�. In this case, Eqs. �18� become

xn+1 = x + p� −
1

2
V��2 −

1

12
p�3V� − V0���

3 + O��4� ,

pn+1 = p − V�� −
1

2
pV��2 +

1

12
�3V�V� − V�V0� − 2V�p2��3

+ O��4� , �25�

and, finally,

xn+1 − x�t + �� =
1

12
p�V0� − V���3 + O��4� ,

pn+1 − p�t + �� =
1

12
V��V� − V0���

3 + O��4� . �26�

Hence, the modified discrete gradient scheme is of the sec-
ond order.

Finally, we consider the symmetric modification of the
locally exact discrete gradient scheme with �n given by Eq.
�17�. In this case,

� = � +
1

12
V��3 +

1

24
pV��4 +

1

24
�5�1

5
�V��2 +

1

4
p2V�4�

−
1

2
V�V�
 + O��6� , �27�

and we get xn+1−x�t+��=O��5� and pn+1− p�t+��=O��5�.
Therefore, the numerical scheme defined by Eqs. �5�, �6�,
and �17� is of the fourth order.

V. NUMERICAL EXPERIMENTS

The accuracy of our numerical schemes was tested on the
case of the simple pendulum equation �V�x�=−cos x�. We
compared them with the standard leap-frog scheme, the dis-
crete gradient method, and modified discrete gradient
method �introduced in �14��. All motions of the simple pen-
dulum are periodic, so we focus our attention on the relative
error of the period of considered discretizations. Numerical
experiments show that both discrete gradient methods stud-
ied in �14� are very stable. Our methods, the locally exact
discrete gradient scheme, and its symmetric modification
share this property as well. The details of numerical compu-
tations of the period are explained in �14�. For simplicity, we
assume x0=0. In this case, p0

2=2E+2 and the exact solution
of the continuous problem is given by sin x

2 =
p0

2 sn�t ,
p0

2 � for
p0�2 and sin x

2 =sn�
p0t
2 , 2

p0
� for p0�2, where sn�u ,k� denotes

one of Jacobi elliptic functions with the modulus k �see, for
instance, �23��. In the limiting case p0=2, we have
sin x

2 =tanh t.

A. Locally exact predictor

In practical implementation, we use the implicit scheme
�5� as the corrector, while taking as the predictor the explicit
scheme,

xn+1 = xn +
sin��n��

�n
pn −

1 − cos��n��
�n

2 V��xn�,

�if V��xn� � 0� ,

xn+1 = xn + �pn −
1

2
�2V��xn�, �if V��xn� = 0� ,

xn+1 = xn +
sinh��n��

�n
pn −

1 − cosh��n��
�n

2 V��xn�,

�if V��xn� � 0� . �28�

In order to obtain Eqs. �28�, one has to eliminate pn+1 from
the system �5� and expand the result in the Taylor series with
respect to xn+1−xn, leaving only linear terms. The numerical
scheme �28� has the same order �third� as Eqs. �5�. What is
more, these both difference schemes are locally exact. How-
ever, this is of some advantage only for very small � and for
very short times �thus, Eqs. �28� can serve as a very good
predictor�. If the long-time behavior is concerned, the
scheme �28� is not good and yields solutions with wrong
qualitative behavior.

B. Iterative solution of implicit equations

Here we add more details concerning the numerical solu-
tion of Eqs. �5�. All discrete gradient schemes are implicit.
To solve these implicit equations, we apply both the fixed-
point method and the Newton method. These procedures are
iterated until the acuracy 10−16 is obtained. At some points
�where the function x=x�t� is almost flat�, the problem seems
to be somewhat ill conditioned and the iterations oscillate
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without reaching the limit �the amplitude of these small os-
cillations is at most of order 10−15�. In such cases, we stop
the iterating procedure after 100 iterations �in the case of the
fixed-point method� or 15 iterations �in the case of the New-
ton method�. Choosing higher values for these maximal
numbers of iterations, we get the same final results. The av-
erage number of iterations strongly depends on � and shows
some dependence on p0 as well. For small � �e.g.,
�=0.02�, we need only 2 iterations using the Newton method
and 5 iterations using the fixed-point method. These numbers
grow with �, e.g., for �=0.2 we need 3 and 12-13 iterations,
respectively �the exact average number of iterations depends
on p0�, and for �=0.5 we need 3-4 and 21-24 iterations,
respectively. We estimate that the Newton method needs
about 3.3 times more time for one iteration than the fixed-
point method. Therefore, in our case, both these basic itera-
tion methods work with a similar speed. It turns out that for
small time steps �say, ��0.2�, both methods have almost the
same computational cost �which is only 6–10 times higher
than the cost of the leap-frog scheme�. Actually, for smaller
time steps �e.g., for �=0.02�, the fixed-point method is even
slightly faster. For larger �, the Newton method becomes
relatively more effective �e.g., for �=0.9, the fixed-point
method works over 2 times slower�.

C. Relative error of the period

The accuracy of our schemes is surprisingly high, espe-
cially for small �but not necessarily very small� time steps.
As an example, we present the case �=0.02 �see Fig. 1�. For
small oscillations �e.g., p0=0.02�, the accuracy of the locally
exact discrete gradient scheme is greater by 5 orders of mag-
nitude as compared to the modified discrete gradient method,
and by 9 �nine� orders of magnitude better than the leap-frog
or discrete gradient method. Actually, the locally exact dis-
crete gradient method and its symmetric modification are
much more accurate than any other considered method for
any initial conditions �see Fig. 1� �note that the scale on the
vertical axis is logarithmic�. In the case of oscillating mo-

tions, the methods proposed in this paper are better by about
4 orders of magnitude. The symmetric modification of the
locally exact discrete gradient scheme beats all other meth-
ods in the large energies region �p0�2�.

We present also the time-step dependence of the consid-
ered numerical schemes for p0=1.8 �see Fig. 2, this graph is
also semilogarithmic�. The locally exact discrete gradient
scheme is clearly the best. The symmetric modification is
slightly less accurate. The discrete gradient scheme is com-
parable with our methods only for large time steps. Taking
into account the computational cost of the methods �which
reduces, in practice, to allowing smaller time step for the
leap-frog scheme�, we see that for p0=1.8 the corrected leap-
frog scheme yields results similar to the discrete gradient
method. Both methods presented in this paper are much bet-
ter. Only in some exceptional cases �e.g., the “resonance
value” p0=1.21, see �14�� the corrected leap-frog scheme is a
little bit better than locally exact modifications of the discrete
gradient method.

D. Neighborhood of the separatrix

The neighborhood of the separatrix �p0	2� is most diffi-
cult to be simulated numerically. The discrete gradient
method turns out to be relatively good in this region �see
�14��. The locally exact discrete gradient method is excellent
also in that case �see Fig. 3�. Its symmetric modification
yields practically the same results. We point out that the tra-
jectory is very close to the separatrix ��p0−2�=10−10� and � is
very large but, nevertheless, our methods simulate very ac-
curately the motion of the pendulum. Discrete points xn prac-
tically lie on the continuous curve of the exact solution. The
other two discrete gradient methods also yield quite good
results �at least qualitatively�, while the leap-frog scheme
fails to reproduce even the qualitative behavior. The compu-
tational cost of the proposed implicit algorithms is higher
than the cost of explicit schemes: we estimate that in the case
presented at Fig. 3, one step of discrete gradient schemes
iterated by the Newton method costs approximately 13 times
more than one step of the leap-frog scheme �for the fixed-
point method, the corresponding factor is close to 29�. How-

FIG. 1. Relative error of the period for �=0.02 as a function of
p0. White triangles: leap frog; white diamonds: discrete gradient;
black diamonds: modified discrete gradient ��=const�; black
squares: locally exact discrete gradient; gray squares: symmetric
modification of the locally exact discrete gradient.

FIG. 2. Relative error of the period for p0=1.8 as a function of
� �theoretical period Tth=9.122 196 554�. Symbols: the same as in
Fig. 1.
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ever, in this case the leap-frog scheme cannot be essentially
improved even by very serious decreasing of the time step.
Note that on Fig. 3, the time step for the leap-frog scheme
��=0.001� is much smaller than the time step for gradient
schemes ��=0.9� and, therefore, the computational cost of
the leap-frog scheme is much higher in comparison with the
discrete gradient method and its modifications. Therefore, in
the neighborhood of the separatrix, the leap-frog scheme is
much worse than all discrete gradient methods.

VI. CONCLUSIONS

The proposed numerical integrators �5� and �6� �the lo-
cally exact discrete gradient method and its symmetric modi-
fication, corresponding to Eqs. �7� and �17�, respectively�
have important advantages:

�i� exact conservation of the energy integral �i.e., Eq. �3�
holds�,

�ii� higher order �third and fourth, respectively� as com-
pared with the discrete gradient method,

�iii� high stability and accuracy,
�iv� very good long-time behavior of numerical solutions.
Therefore, modifications presented in this paper essen-

tially improve the discrete gradient method �at least in the
one-dimensional case� keeping all its advantages.

We point out, however, that numerical schemes �5�, like
all discrete gradient methods, are neither symplectic nor vol-
ume preserving. Moreover, in the case defined by Eq. �7�, the
scheme �5� is not time reversible. The symmetric �time-
reversible� modification of Eqs. �5�, although of higher order
�fourth�, is not much more accurate than the locally exact
discrete gradient method �actually, for oscillating motions, it
is less accurate�. It may suggest that the local exactness is of
considerable advantage, perhaps worthwhile to be preserved
even at the cost of breaking the symmetry of a numerical
scheme. This point deserves further studies.

We plan to generalize the approach presented in this paper
on some multidimensional cases and to extend the range of
its applications on some other numerical integrators �includ-
ing the implicit midpoint rule� �24�. Note that the time step
of the locally exact discrete gradient schemes �5� is equal to
� and is assumed to be constant. However, there are no ob-
stacles to use the variable time step and it is worthwhile to
examinate this possibility in the future.
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